Search results for "mechanical deformation"
showing 3 items of 3 documents
Rippling of two-dimensional materials by line defects
2020
Two-dimensional materials and their mechanical properties are known to be profoundly affected by rippling deformations. However, although ripples are fairly well understood, less is known about their origin and controlled modification. Here, motivated by recent reports of laser-controlled creation of line defects in graphene, we investigate how line defects could be used to control rippling in graphene and other two-dimensional materials. By sequential multi-scale coupling of density-functional tight-binding and continuum elasticity simulations, we quantify the amount of rippling when the number and the cumulative length of the line defects increase. Simulations show that elastic sheets wit…
Simulation of the electromechanical behavior of multiwall carbon nanotubes.
2009
The enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique, and a direct analysis of CNTs of the dimension used in nanoelectronic devices seems prohibitive at the present. Here a computationally effective mixed finite element (FE)/tight-binding (TB) appro…
Calculation of the Electromechanical Properties of CNTs Under Deformation by Means of a Novel Numerical Model
The effects of mechanical deformation on the electron transport behavior of carbon nanotubes (CNTs) are of primary interest due to the enormous potential of nanotubes in making electronic devices and nanoelectromechanical systems (NEMS). Moreover it could help to evaluate the presence of defects or to assess the type of CNTs that were produced. Conventional atomistic simulations have a high computational expense that limits the size of the CNTs that can be studied with this technique. Here we present a novel numerical approach able to simulate the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices. The numerical model was designed to realize orde…